Why our response to sustainability is vital to the future of the livestock sector

Why our response to sustainability is vital to the future of the livestock sector

Growing our future: The capacity of the livestock sector to rapidly, effectively and demonstrably find the balance between increased productivity and sustainability will ultimately determine its future say Dr Drewe Ferguson and Dr Ian Colditz.

Growing our future: The capacity of the livestock sector to rapidly, effectively and demonstrably find the balance between increased productivity and sustainability will ultimately determine its future say Dr Drewe Ferguson and Dr Ian Colditz.


Opinion: CSIRO scientits Dr Drewe Ferguson and Dr Ian Colditz discuss the big challenges facing the livestock sector and explore what is being done to ensure its future.


Opinion | Growing our Future with the CSIRO 

Humans have co-evolved with livestock for millennia since the domestication of wild sheep, goats and cattle commenced around 10,000 to 13,000 years ago.

Fast forward a few thousand years and livestock farming has undergone significant transformation and growth.

Currently, farmed livestock in Australia generate more than $30 billion annually, just under half the total value of agricultural production.

But what does the future hold for the sector? The global demand for meat, dairy and eggs out to 2050 is projected to grow 50-70 per cent according to the FAO.

Demand will be driven by population growth and increasing consumer affluence and urbanisation in developing countries.

That sounds like a great opportunity for livestock industries and therefore a good reason to be optimistic about the future....right?

Well, it is, but the future for the sector will not simply be guaranteed by demand growth.

How well each industry responds to meet the increasing challenges central to the societal determinants of sustainability will be critical.

The capacity of the livestock sector to rapidly, effectively and demonstrably find the balance between increased productivity and sustainability will ultimately determine its future.

The challenges

The volume and frequency of scientific evidence and commentary concluding that humans should consume less meat (in particular), dairy and eggs has increased.

This has been predicated on the impacts of the production and consumption of animal-sourced foods on planetary and human health, respectively.

While there is clear consensus among dietary and health organisations that moderate consumption of animal derived foods is desirable, there are points of contention in the health debate, such as the link between meat consumption and poor health outcomes (eg lack of causal clinical evidence).

The authors: Dr Drewe Ferguson is the Research Director, Livestock Systems with CSIRO Agriculture and Food. Dr Ian Colditz is an Honorary Fellow, Livestock Systems, CSIRO Agriculture and Food.

The authors: Dr Drewe Ferguson is the Research Director, Livestock Systems with CSIRO Agriculture and Food. Dr Ian Colditz is an Honorary Fellow, Livestock Systems, CSIRO Agriculture and Food.

The world is also facing a global malnutrition disparity where 25pc of the world's population are overweight or obese and 39pc are undernourished or hungry. Clearly there are countervailing forces that will influence the future demand for meat, dairy foods and eggs in response to these global malnutrition challenges.

The escalation of environmental and ethical concerns regarding livestock production requires greater action from the sector if it is to maintain societal and consumer trust.

Over the next three weeks, this feature will explore the role technologies and the innovation system will play to enable the livestock sector to tackle some of these challenges to keep pace with the increasing consumer demands and societal expectations for livestock products.

Innovation focus 

The current innovation system servicing agricultural research and development (R&D) in Australia is in need of reform if we are to maintain or better still, achieve the required growth in productivity ( 2pc/year) to meet global demands for foods.

The opportunities to reinvigorate the agricultural innovation system were recently explored by the Farm Policy Journal. Central to the discussion was the need for greater emphasis on innovation rather than the current science-centric approach. Structural reforms that yield stronger and more effective linkages and leadership between government, private industry and research agencies are also required.

Big challenges do not get solved by piecemeal, small or short term research investments which unfortunately has been our operating norm. We also need to be cognizant of the national and indeed global contraction in research and extension capacity servicing the livestock sector.

In response, there has been a growth in national collaborative research partnerships to maintain multidisciplinary critical capacity. Expanding research partnerships beyond national boundaries will also be essential given the commonality of the challenges confronting livestock and the contracting research capacity.

Ongoing development of more innovative models to deliver industry impact will be critical. Despite this slightly pessimistic tone, improvements in productivity have and continue to be made. However, the capacity to maintain this into the future is under pressure. Therefore a rethink and redesign of how we deliver innovation within the sector and across supply chains is required.

Digital Disruption 

Digital technologies, or agtech, are already transforming agriculture, particularly the broad-acre cropping sector. It's been estimated that the gross value of production of Australian agriculture could increase by $20 billion (relative to 2014/15) through the application of digital technologies.

The penetration of digital technologies within the livestock sector has been slower to evolve but this is changing not just in Australia but globally. We are witnessing significant growth in the developmental pipeline of on-animal sensors, production environment monitoring technologies (soil, water, plant biomass) and novel analytical and decision support tools. However, one area of concern is the shortage of agtech investment in Australia and there is a need to encourage and support more investment in these technologies to realise their full potential on-farm.

The transformational impact these technologies could have in livestock systems include:

  • Enabling more informed and prescient management decisions (eg matching animal demand with feed supply)
  • Autonomous control of livestock (eg virtual fencing - see story below)
  • Measurement of novel or difficult-to-measure phenotypes or traits for animal breeding (eg feed efficiency on pasture, heat tolerance)
  • Authentication of provenance and individual life history including welfare history, medications, production milestones, and husbandry events.

Inherent in all livestock systems are risks such as feed supply, disease and climatic extremes.

As a general rule, increased capacity to forecast and manage production risks translates into higher enterprise productivity and resilience.

The pivotal role of digital technologies is to provide the producer with the capacity to better estimate and manage production risks.

Slow to grow: The penetration of digital technologies within the livestock sector has been slower to evolve than other agricultural industries.

Slow to grow: The penetration of digital technologies within the livestock sector has been slower to evolve than other agricultural industries.

Feed or food? Debate rages over land use

The spotlight on the impact of livestock on environmental health has intensified.

The sustained criticism centres on issues such as the utilisation and degradation of land and water resources and reducing biodiversity losses and greenhouse gas emissions.

One of the critical issues is the nexus between land use and feed/food production - the competition to produce livestock feed or human food on arable land.

With the intensification of livestock systems, there has been an increase in the amount of grains and pulses fed to livestock.

However, contrary to popular perception, a recent global analysis by Mottet revealed that only 14 per cent of the total feed supplied to livestock consists of materials that could be consumed by humans.

Proportionally, this is expected to rise with the projected increase in livestock production but the increase can be partially attenuated through improvements in feed conversion efficiency, particularly in ruminants.

Often the feed-food debate is considered from an all or nothing perspective, either the land is used to grow grain for livestock or for people.

However, it is possible to achieve both on the same parcel of land, at least for ruminants, through dual purpose cropping.

Here the animals tactically graze the growing crop (eg wheat) before being removed to allow the plant to recover prior to harvest.

Extensive on-farm trials have shown that whilst there may be a slight trade-offs in grain yield, the farm gross margins are significantly higher (at least $100/ha) than producing grain alone.

Related reading:

Dual purpose crops boast double meaning

Animal growth rates are improved and consequently, less methane is produced.

Additional animal health and welfare benefits (reduced parasite burdens) are also likely.

Increased utilisation of food by-products and waste streams offers further opportunities to reduce the requirement for arable land to produce livestock feed.

What is unknown at this stage is the feasibility of safely and efficiently processing and distributing food waste and by-products to livestock at scale.

As stated above, the vast majority of what animals consume is not edible by humans and this is particularly the case for ruminants, which, by virtue of their unique digestive system, have the capacity to convert plant biomass into meat, milk and fibre.

The proportion of land occupied by grazing animals in Australia is quite large representing 54pc of Australia's total land mass.

Environmentally, the establishment of some of this grazing resource has not come without cost as deforestation/land clearing and reductions in biodiversity have occurred.

Moving forward, it will be important that the current trend of reduced land clearing continues.

In Australia, GHG emissions from the redmeat sector accounted for approximately 9pc of all national GHG emissions.

While sectoral GHG emissions have declined 35pc from 2005 to 2015, largely through reductions in deforestation, mitigating enteric methane emissions from ruminants remains a major challenge.

Importantly, there are nutritional and genetic solutions available now and in the pipeline.

For example, some current tropical legumes (such as Leucaena) have an antimethanogenic effect when fed to cattle.

Genetically, it is possible now to select animals that are either more metabolically efficient in converting feed to muscle, milk or fibre, and/or produce less methane.

Another exciting prospect is the CSIRO discovery and development of novel rumen modifying supplements such as the seaweed asparagopsis.

When tactically fed to cattle and sheep, an 80 per cent reduction in methogenesis was observed.

While impressive as a single technology, there are issues to work through such as scaling up the production of asparagopsis and developing cost effective ways to deliver the supplement under extensive grazing systems.

The take home message here is that there are available and emerging solutions, and an integrated strategy, rather than any single technology that are likely to deliver the best outcomes at a national level given the diversity of production systems.

Given this and factoring in strategies to increase carbon sequestration, there is good reason to be cautiously optimistic about achieving the redmeat sector's goal of achieving carbon neutrality on-farm by 2030.

Production efficiency

The development of sustainable improvements in production efficiency will continue to be a key imperative for livestock.

The application of genetic, nutritional, digital, health or management solutions or technologies will continue to drive incremental gains in efficiency.

However, the larger, more transformative improvements are likely to arise through the adoption of more systems-based approaches.

This is by no means a new concept but for a variety of reasons it has lost prominence in livestock production science.

Each livestock enterprise is a complex and dynamic system and while benefits accrue through single technology solutions such as genetics or nutritional supplements, far greater gains in productivity, sustainability and profitability are likely to be realised through integrating multiple technologies.

Reinvigorating systems based thinking is critical in the design and execution of future research and development.

Production efficiency is multidimensional but a core aspect relates to the capacity of the animal to convert feed into food and fibre for humans.

Unlike the massive gains in feed efficiency that have occurred in pigs and poultry, ruminants on the other hand, have a much lower conversion efficiency.

Related reading:

Feed efficiency breakthrough

While progress has been made, ongoing sustainable gains in ruminant feed efficiency will require a more integrated approach that targets the biological intersection between the plant biomass, the rumen microbiome and the animal.

The application of more advanced and sophisticated computational analytics like machine learning will be critical given the sheer magnitude and complexity of biological processes within and interactions between these elements.

The rise of CRISPR

CRISPR and other technologies that enable gene editing (small set of targeted changes in the DNA) have considerable potential to transform key drivers of production efficiency across many sectors.

While highly promising, the technology is not without its challenges.

For example, all of the economically important livestock production and resilience traits (growth, reproduction, disease resistance) are polygenic meaning that they are regulated by large numbers (possibly thousands) of genes.

Secondly, the position food regulators take on whether a small number of gene edits does or does not constitute genetic modification and the flow-on effects on consumer acceptance remains a contentious issue.

In livestock, gene editing has been successfully applied to improve animal health and welfare outcomes such as breeding polled cattle which obviates the need to perform the painful practice of dehorning.

Related reading:

Taking genes to the next level

In another exciting application for the egg industry, it is now possible to identify male embryos early in the development of the egg prior to hatching.

Instead of destroying millions of day-old male chicks, the identified eggs can be removed and redirected into human vaccine production.

Ethical disruption

Viewpoints on the relationship humans have with the environment are changing and are challenging the economic and political fabric of society in a manner that makes prediction of future scenarios difficult.

The issues and perspectives are complex and are occurring in an environment that can be characterised as ethical disruption, analogous to the digital disruption occurring to older models of livestock production and more generally across society.

For instance, rights and ownership over environmental "assets" including land, water, plants, animals, genotypes and means of production are being challenged by alternative models such as stewardship over these "components" of the environment.

Perceived rights and the identities they entail are rarely surrendered willingly.

More than merely maintaining a watching brief, the livestock sector can contribute to discussions on ethics, for instance by drawing on knowledge of processes of domestication, co-evolution of humans and livestock within agricultural niches, and psychosocial co-dependencies between humans and farm animals.

An important contribution here is to make value statements about the benefits to humanity of livestock production systems that lie beyond the proximate economic value of livestock products.

Feeding our future world will require the livestock sector to proactively manage the balance and indeed tension between increased production efficiency and sustainability.

The science journalist Charles Mann elegantly articulated this tension in his recent book "Prophets and Wizards".

Prophets argue for a reduction in the ag footprint as we have exceeded the planet's ecological limits whereas wizards believe that increased innovation is central to feeding the world.

Ultimately, the acceptance and the response to these contrasting philosophies will have a large bearing on the future of the livestock sector.

- Dr Drewe Ferguson is the Research Director, Livestock Systems and Dr Ian Colditz is an Honorary Fellow, Livestock Systems. Both are with CSIRO Agriculture and Food


From the front page

Sponsored by